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CMScaller: an R package for 
consensus molecular subtyping of 
colorectal cancer pre-clinical models
Peter W. Eide1,2,3, Jarle Bruun1,2, Ragnhild A. Lothe1,2,3 & Anita Sveen   1,2

Colorectal cancers (CRCs) can be divided into four gene expression-based biologically distinct consensus 
molecular subtypes (CMS). This classification provides a potential framework for stratified treatment, 
but to identify novel CMS-drug associations, translation of the subtypes to pre-clinical models is 
essential. The currently available classifier is dependent on gene expression signals from the immune 
and stromal compartments of tumors and fails to identify the poor-prognostic CMS4-mesenchymal 
group in immortalized cell lines, patient-derived organoids and xenografts. To address this, we present 
a novel CMS classifier based on a filtered set of cancer cell-intrinsic, subtype-enriched gene expression 
markers. This new classifier, referred to as CMScaller, recapitulated the subtypes in both in vitro and in 
vivo models (551 in total). Importantly, by analyzing public drug response data from patient-derived 
xenografts and cell lines, we show that the subtypes are predictive of response to standard CRC drugs. 
CMScaller is available as an R package.

Colorectal cancer (CRC) is the fourth most common cause of cancer deaths worldwide1. Gene expression profil-
ing shows promise to identify clinically important subtypes2–6, including a mesenchymal-like subgroup with high 
stromal infiltration, poor patient prognosis7 and poor response to standard treatments such as oxaliplatin8 and 
antibodies against EGFR3,5,9. Based on gene expression profiles from close to 4000 primary tumors, an expert con-
sortium recently proposed a classification scheme reconciling this work and dividing CRCs into four biologically 
distinct subtypes10. In this consensus system, CMS1-immune comprises most tumors with microsatellite insta-
bility (MSI) and is characterized by infiltration of activated immune cells. CMS2-canonical and CMS3-metabolic 
both show epithelial characteristics, with oncogene amplification and high WNT and MYC signaling predom-
inantly in CMS2 and metabolic reprogramming in CMS3. CMS4 comprises the more mesenchymal-like can-
cers, with high stromal infiltration and poor patient prognosis10,11. So far, identification of subtype-specific drug 
responses has only scratched the surface, and CMS classification presents an unexploited basis for stratified treat-
ment and drug repurposing in CRC.

In vitro and in vivo models of CRC recapitulate the molecular profiles of primary cancers12–15, as well as clin-
ically relevant pharmacogenomic associations and are suitable tools for drug discovery16,17. Publicly available 
data from pre-clinical drug screen studies represent an invaluable resource, however, analysis of CMS-drug 
associations is hindered by imprecise subtyping of the models. The original classifier was developed spe-
cifically for primary CRCs (pCRC), and it was recently shown that it fails to identify the CMS1-immune and 
CMS4-mesenchymal groups in cell lines, patient-derived organoids and xenografts (PDX)15,18–20, due to the 
absence of human immune-related signatures, stromal components and extra-cellular matrix in cell cultures and 
animal models7,10,18–22. However, at least some CRC cell lines are mesenchymal-like5,16,23,24 and both organoids 
and PDXs can be established with minimal bias in terms of clinical and molecular covariates of the originating 
tumors14,15,25. This indicates that the apparent lack of CMS4-like models is not a result of biological adaptation 
to or selection for culturing conditions. We aimed to develop a classifier optimized for pre-clinical models and 
introduce here CMScaller, an algorithm for CMS classification in the absence of human tumor stroma. We apply 
CMScaller to in vitro and in vivo models with publicly available gene expression data and show that it enables 
pre-clinical analysis of CMS-drug associations.
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Results
Pre-clinical models require a cancer cell-intrinsic CMS classifier.  To illustrate why the original CMS 
classifier is not applicable to pre-clinical models, the classifyCMS.RF function in the R package CMSclassifier10,26 
was applied to gene expression data from CRC cell lines (n = 131)27, organoids (n = 22 + 26)15,16 and PDXs 
(n = 40 + 37 + 51 + 244)14,20,28,29. Of all 551 samples, 219 (66%) were unclassified using default parameters. 
Among the classified, 245 (74%) were CMS2, and only 3 samples (0.9%) were identified as CMS4-mesenchymal 
(Supplementary Table 1). In one PDX dataset predicted to lack the CMS4 subtype, single-sample gene set expres-
sion enrichment analysis indicated strong TGFβ response and MSS-like characteristics in two samples, reminis-
cent of CMS4 characteristics (Fig. 1a).

To identify genes expressed in or induced by the human tumor microenvironment and therefore with reduced 
levels in xenotransplants, we performed differential gene expression analysis comparing 30 pCRCs against 40 
PDX models14. A significant proportion of genes (44/178, 25%) included as features in the original CMS classifier 
and highly expressed in CMS4 pCRC were reduced or almost completely lost in the PDX samples (log2fold-change 
(LFC) > 2, Fig. 1b). Considering all 108 candidate CMS4 genes with reduced expression in the PDXs, the set was 
significantly enriched for genes involved in biological pathways characteristic of the tumor stroma, including 
epithelial to mesenchymal transition (EMT), extracellular matrix organization and angiogenesis, which ranked 
1st, 2nd and 8th in terms of significance among 2038 unselected gene sets from reactome.org30 and MSigDB 
Hallmarks31 (hypergeometric test, Supplementary Table 2). Of the 11921 genes overlapping between the pCRC 
and PDX datasets, 11753 genes showed low differential expression between pCRCs and PDXs (pCRC-PDX 
LFC < 2, no p-value threshold), 921 (7.8%) of these were identified as differentially expressed between CMS4 and 
CMS1/2/3 in pCRCs (LFC > 1, false discovery rate adjusted-p < 0.1), indicating that CMS4 cancer cells present 
intrinsic gene expression signals that can be used for subtyping (Fig. 1c).

Development, application and evaluation of the cancer cell-adapted CMScaller.  Accordingly, 
to construct a classifier useful for pre-clinical models, we set out to identify cancer cell-intrinsic subtype markers 
by selecting genes that (i) were highly expressed in each CMS group compared with the rest in pCRCs (LFC > 1, 
adjusted-p < 0.1; representing candidate markers), (ii) had a large range in expression values across a panel of 
CRC cell lines32 (top-25% 10–90 cross-sample inter-percentile range) and were highly expressed in at least a 
subset (top-25% within-sample read count in at least three cell lines; representing markers that are informative 
in cancer cells) and (iii) were not lost upon xenotransplantation14 (pCRC-PDX LFC < 2, no p-value threshold; 
representing cancer cell-intrinsic markers, Fig. 2a).

The filtered gene set was used as input for nearest template prediction33, resulting in the CMScaller algo-
rithm (Fig. 2b). Although created for pre-clinical models, CMScaller performed well also in pCRCs. Using the 
original CMS classifications as reference for pCRCs from TCGA, the overall prediction accuracy was 0.83 (95% 
confidence interval 0.74–0.9, p = 1.5 × 10−13, binomial test for accuracy better than no information rate). Lowest 
class-wise sensitivity and specificity were found for CMS3 (0.71) and CMS4 (0.91), respectively (Supplementary 
Table 4). However, gene expression-based principal component analysis showed that most disagreements were at 
class-boundaries, where the CMS groups are least distinct (Fig. 2c).

Figure 1.  CMS4-mesenchymal markers in primary cancer are partially lost upon xenografting. (a) Single-
sample gene expression enrichment scores for gene sets of TGFβ responses versus MSS-like characteristics 
identify two PDX models with particularly strong CMS4 characteristics (encircled). Samples are colored 
according to CMS predictions based on the original CMSclassifier. (b) Differential gene expression between 
pCRCs and PDX models, plotted against mean overall expression, indicates that genes included as markers in 
the original CMSclassifier and highly expressed in CMS4 primary tumors (green) show reduced expression in 
PDXs. The top-5 differentially expressed genes are labeled. Units are log2(signal). (c) Volcano plot of differential 
expression analysis of CMS4 versus CMS1/2/3 primary CRCs. Highlighted in purple are the genes differentially 
expressed between pCRCs and PDXs (absolute LFC > 2). The five genes with the largest absolute difference 
between CMS4 and CMS1/2/3 are labeled. CMS: consensus molecular subtype; LFC: log2fold-change; MSI/
MSS: micro-satellite instable/stable; PDX: patient-derived xenograft; pCRC: primary colorectal cancer.
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Cell lines represent 100% cancer, and the rationale for adding the CRC cell line-filter was to exclude mark-
ers of non-carcinoma cell types (genes preferentially expressed by the tumor stroma will not have high expres-
sion or expression variation in CRC cell lines). Furthermore, genes with large variation in expression between 
cell lines are likely to be informative on intrinsic phenotype. To reduce the problem of calling expressed versus 
non-expressed genes, a dataset based on RNA-sequencing (rather than microarray data) was applied. However, to 
test how sensitive CMScaller is to thresholds and data sets used during development, we generated four additional 
prediction template gene sets with the following changes: (i) adjusted-p threshold for differential expression anal-
ysis reduced from 0.1 to 10–4 in comparisons among subtypes in pCRC; (ii) selected CRC cell line panel32 replaced 
with another independent RNA sequencing-based dataset34; (iii) pCRC-PDX LFC threshold reduced from two 
to one and (iv) any gene independently reported as lost in PDXs by Isella et al. was excluded7 (Supplementary 
Fig. 1a,b). For the four resulting classifiers, the number of genes overlapping with the original CMScaller template 
set ranged from 205 to 459 (21–95% overlap in features). These 1 + 4 templates were used to perform five inde-
pendent classifications on the Gao et al. PDX models29 (Supplementary Fig. 1b,c). The classification concordance 
ranged from 0.95 to 0.98 and, critically, 47/50 samples (94%) were consistently assigned to a single CMS using all 
templates (the last sample was consistently unclassified).

We have previously provided CMS classification of widely used, immortalized CRC cell lines, and shown that 
these in vitro models recapitulate the properties of the CMS groups [Sveen submitted]. Here, we demonstrate that 
CMScaller can robustly classify also CRC organoids and PDXs, and outperforms the original CMSclassifier in 
seven publicly available datasets, including 2615 and 22 organoids16, 4014, 3728, 5129 and 24420 PDX models, as well 
as a dataset of 13127 cell lines. Using the original CMSclassifier, most samples were classified as CMS2, and only 

Figure 2.  CMScaller feature selection and performance in pCRC. (a) Schematic illustration of gene filtering-
approach. Three different datasets (top) were used to identify robust cancer cell-enriched subtype markers (only 
genes represented in all three datasets were considered). (b) CMScaller performance on the test set of pCRCs 
from TCGA (n = 143). Heatmap shows the relative expression levels of subtype marker genes (vertical bar) 
with classifications indicated below (horizontal bar, white indicate prediction confidence p-values). (c) Plot 
shows results from principal component analysis (expression data batch-adjusted for sequencing-platform). 
Disagreements between CMScaller and CMSclassifier are indicated with diamonds. (d) Heatmap shows results 
from mRNA gene set analysis, confirming enrichment of known characteristics in each CMS group (details 
of the gene sets are given in Supplementary Table 3). Red and blue indicate relative up- and down-regulation, 
respectively, and color saturation represents increasing statistical significance, as indicated. dn: down-
regulation; n/p: number of samples/features; NA: not assigned; PC: principal component; PDX: patient-derived 
xenograft; pCRC: primary colorectal cancer; RNA-seq: RNA-sequencing; TCGA: The Cancer Genome Atlas; 
up: up-regulation.
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3/551 as CMS4 (Supplementary Table 1). In contrast, using CMScaller, all CMS groups were found to be present 
in all datasets and CMS4 accounted for 7.5–22% of the samples (Supplementary Table 5). Notably, 46% of the 
metastatic CRC-derived PDXs were not assigned any CMS, perhaps due to biased representation of individual 
CMS groups compared to primary CRCs (ref. Discussion).

Gene set expression analyses showed that known CMS group associations were recapitulated in both orga-
noids and PDX models (Fig. 3a,b). Specifically, CMS1 was MSI-like, CMS2 was MSS-like, had activated HNF4A, 
MYC and WNT target gene sets, CMS3 had up-regulated CDX2 targets and metabolic processes, and CMS4 
models showed strong relative activation of TGFβ and EMT. The same pattern was not seen for predictions based 
on the original CMSclassifier (Supplementary Fig. 2). To further support the validity of our subtyping, we ana-
lyzed additional molecular data available in two of the datasets, including MSI-status in organoids from Fujii 
et al.15 and mutation data in PDXs from Gao et al.29. In the organoids, in line with expectations, 5/6 MSI sam-
ples were predicted to be CMS1-immune (CMS1/MSI: p = 1.6 × 10−4, Fisher’s exact test). In the PDXs, both the 
number of total mutations and BRAF mutations were significantly higher in CMS1 models (Fig. 3c,d, number of 
mutations: p = 9.9 × 10−4, Mann-Whitney test and BRAF: p = 4× 10−4, Fisher’s exact test), and the median num-
ber of copy number aberrations was 216 for CMS2, significantly higher than 112 for non-CMS2 (p = 5.9× 10−3, 
Mann-Whitney test).

To further evaluate the performance of CMScaller, its prediction accuracy and robustness was compared with 
the original CMS classifications of pCRCs from TCGA in two ways. First, accuracy was evaluated in relation 
to sample size by dividing the pCRCs into random subsets (n = 1000) of varying sizes (range 10–80 samples). 
Accuracy distributions indicated that prediction uncertainties were relatively low when sample sizes exceeded 
more than approximately 40 samples (Supplementary Fig. 3). Second, robustness was evaluated by analyzing 
whether the CMScaller classifications were “cycle consistent” across the sample types. In other words, we tested 
whether the Gao et al. PDX models (n = 51) and assigned CMS groups could be used to derive an independent 
classifier applicable to the pCRCs (CMSPDX ↔ CMSCRC). Using the same strategy as for development of CMScaller, 
we performed differential expression analysis among the CMS groups to identify subtype markers, this time in 
PDX models, and filtered out the genes overlapping with the CMScaller template. Overall subtyping accuracy 
was 0.83 (95% confidence interval 0.74–0.9, p = 6.3× 10−12, binomial test for accuracy better than no information 
rate, Supplementary Table 6), indicating that the PDX models and assigned CMS groups represent real biological 
characteristics of CMS (Supplementary Fig. 4).

Figure 3.  CMS classified PDXs recapitulate relative drug responses observed in patients. (a) Heatmap 
visualization of mRNA gene set analysis showing selected CMS-informative signatures for comparisons 
of organoids (n = 48) classified with CMScaller. Red and blue indicate relative up- and down-regulation, 
respectively, and color saturation reflects statistical significance. (b) Same as a, but for a merged dataset of PDX 
models (n = 128). (c) Plot showing the number of mutations against the number of copy number aberrations 
(number of genes affected) per sample. Samples are colored according to CMScaller predictions. Horizontal axis 
is log-transformed for clarity. (d) Barplot showing distribution of KRAS and BRAF mutations per subtype. (e) 
Response to cetuximab as measured by change in tumor volume (best average response) among PDXs stratified 
by CMS subtype. (f) Response to 5-fluorouracil as measured by change in tumor volume (best average response) 
among PDXs stratified by CMS subtype. CMS: consensus molecular subtype; mut: mutation; PDX: patient-
derived xenograft; wt: wild type
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Pre-clinical models recapitulate CMS-associations to standard CRC drugs.  Pre-clinical analysis of 
CMS-drug associations is an important application of CMScaller. To illustrate this potential, we analyzed publicly 
available drug response data for the standard CRC drugs 5-fluorouracil (5-FU) and cetuximab (anti-EGFR) in 
51 CRC PDX models29. The Sadanandam et al. transit-amplifying subtype, largely corresponding to CMS2, has 
previously been shown to be particularly sensitive to EGFR-inhibitors in vitro5,27, and in vivo response has been 
shown in PDX models with high WNT signaling18. We confirm strong in vivo response to cetuximab particularly 
in PDX models predicted to belong to the CMS2 group (p = 0.024, CMS2 versus non-CMS2, Mann-Whitney 
test, Fig. 3e), independent of KRAS/NRAS/BRAF mutations (p = 0.016, triple wild types only, CMS2 versus 
non-CMS2, Mann-Whitney test). Importantly, the same association was observed for the dataset of PDXs derived 
from metastatic CRCs20, representing a clinical setting where anti-EGFR treatment is routinely used (p = 0.01, 
OR = 2.9, CMS2 versus non-CMS2 independent of KRAS/BRAF/NRAS status, Fisher’s Exact test, Supplementary 
Fig. 5a). Analysis of CRC cell lines with public gene expression data27 and cetuximab response data35 (only 
non-duplicated cell lines with assigned CMS, n = 40, Supplementary Fig. 5b) confirmed our previous finding 
[Sveen submitted] that CMS2 was significantly associated with response to cetuximab also in vitro (p = 3.4× 10−3, 
OR = 8.3, CMS2 versus non-CMS2, Fisher’s Exact test).

Patients with MSI tumors have been shown to respond poorly to 5-FU36, and consistently, 5-FU had poor 
anti-tumor activity in CMS1-immune PDXs (Fig. 3f). Furthermore, CMS4 also showed a poor response to 5-FU 
compared with CMS2/3 PDXs (p =  .0 12, CMS4 vs CMS2/3 Mann-Whitney test), although the sample number 
was small (nCMS4 = 4). For validation, and to eliminate the potential effect of MSI, we analyzed in vitro 5-FU 
response data for a set of MSS CRC cell lines37 (only non-duplicated MSS cell lines with assigned CMS, n = 34, 
Supplementary Fig. 6). In CMS1-CMS4 cell lines, the median concentrations required for 50% growth inhibition 
were 1.1, 1.1, 4.1 and 6.8 µM 5-FU respectively, confirming a poor response in CMS4 (p = 7.2 × 10−3, CMS4 vs 
CMS1/2/3 Mann-Whitney test).

Discussion
Pre-clinical models are invaluable tools for drug discovery, but identification of pharmacogenomic associations 
depends on accurate molecular subtyping. We report the development and performance of CMScaller, a CMS 
classifier optimized for pre-clinical model systems of primary colorectal cancer, including cell lines, organoids and 
xenografts. We illustrate the potential of CMScaller to identify CMS-associated responses to standard CRC drugs, 
including 5-FU-based chemotherapy, the most widely used oncological treatment regimen in CRC. In patients, treat-
ment is contraindicated in the MSI subtype, but response rates are incomplete also within the MSS group. The PDX 
and cell line drug response data presented here suggest that the CMS-groups add additional predictive information, 
indicating a poor response in CMS4. In concordance, previous studies have shown limited benefit from chemotherapy 
in patients with mesenchymal tumors38, also when adding oxaliplatin8, and there is mounting evidence that stromal 
cells confer resistance to chemotherapy39. However, these pre-clinical data indicate that the CMS4 group has cancer 
cell-intrinsic characteristics conferring poor response also in the absence of the tumor microenvironment.

It has been suggested that CMS4 and the related stem-cell/serrated/mesenchymal subtypes mainly reflect tum-
ors dominated by infiltrating stromal cells. Accordingly, novel CRC classifications based on cancer cell-intrinsic 
gene expression signals were recently proposed20,40. There is an interplay between cancer and stromal cells and 
we hypothesized that the stromal composition in part is determined by cancer-cell intrinsic features. Thus, anal-
ogously to how it is reasonable to assume that CMS1 cancer cell-intrinsic immunogenicity may explain the infil-
tration of activated immune cells in the tumor microenvironment, particular aspects of CMS4 cancer cells may 
lead to aggressive growth intimately associated with the formation of tumors with abundant cancer-associated 
fibroblasts and a poor clinical outcome. In a related work, we showed that undifferentiated CRC cell lines, pre-
dominately CMS1 and CMS4, had elevated mRNA expression of TGFB1 and TGFB2, encoding TGFβ cytokines13. 
It is therefore tempting to speculate that CMS4 cancer cells through such paracrine signaling are actively remod-
eling their microenvironments.

CMScaller was developed to provide robust classification across gene expression platforms. This is demon-
strated by gene set analyses recapitulating the hallmarks of each CMS group in datasets generated on different 
technological platforms and for different biological sample types. Robustness can in part be ascribed to the fact 
that gene expression is highly co-regulated and, despite of thousands of features, informationally surprisingly 
low-dimensional41. Consequently, missing, noisy or erroneous measurements are compensated for by other 
co-regulated genes in the nearest template prediction algorithm applied33. This may also explain why the tested 
changes to the template gene set had little impact on the resulting sample classifications.

Although the template genes were selected to enrich for cancer-cell intrinsic signals, they are not exclusively 
expressed by cancer cells. For example, the CMS4 marker VIM is expressed in fibroblasts, but have higher expres-
sion among CMS4 cancer cells than CM2–3 and is therefore a useful template gene. Importantly, stricter gene 
filtering for stromal expression had limited impact on the resulting classifications. Still, CMScaller in its current 
implementation is not recommended for use with samples with a different human stromal component than pri-
mary CRCs, including e.g. patient biopsies of metastatic CRC. Another inherent limitation to CMScaller is that 
the input gene expression data should be centered and scaled. The implication is that small datasets inescapably 
introduce prediction uncertainty, due to the potential for biased representation of either subtype. Our estimations 
indicate that this is a concern for datasets with fewer than approximately forty samples, but becomes minor when 
n exceeds this limit. Similarly, caution is warranted in highly selected datasets where molecular distributions are 
expected, or known, to severely deviate from pCRC cohorts, including metastatic samples42. Importantly, for 
both organoids and PDXs, it has been shown that the models recapitulate the heterogeneity of their original tum-
ors14,15,25. However, to assess potential bias, we recommend analyzing CMS-associations of additional molecular 
markers, for instance MSI-status and BRAF mutations. Additionally, CMScaller includes a function for down-
stream gene set expression analyses, allowing for assessment of CMS hallmarks.
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Within its proper context of pCRC-derived cohorts, accuracy assessment of CMScaller indicated that pre-
diction errors were mainly made at the class boundaries, where expression patterns are less distinct. This may be 
explained by intra-tumor heterogeneity43,44, both from immune/stromal infiltration (tumor cell percentage and 
stromal composition) and intrinsic to the cancer cells45. The extent of heterogeneity of molecular subtyping has 
recently been illustrated by single cell RNA-sequencing46. We have tested CMScaller on these data, and fair corre-
spondence in CMS group assignments was obtained for individual cancer cells from the same patient. However, 
with only ten patients, the number was too low to draw any strong conclusions whether CMScaller is useful with 
such data inputs. From a technical perspective, single-cell RNA-sequencing data is exceedingly noisy and a classi-
fier should be optimized for and take advantage of the digital nature of such data. We envision implementing this 
as a future option in the CMScaller package, as well as to further improve the prediction template gene set taking 
advantage of larger, higher-quality datasets as they become available.

In addition to pre-clinical drug response studies, model systems may also be useful for functional analyses of 
central CMS-associated characteristics in controlled environments. The CMScaller presented here should enable 
the matching of patient subtypes with appropriate models, and we hope this will be a useful tool for the research 
community. CMScaller is platform independent and available as an R package.

Methods
Gene expression and drug response data.  Klijn et al. colorectal, liver and stomach cancer cell line 
mRNA and non-coding RNA-sequencing counts were downloaded from ref.32, non-Entrez features were dis-
carded and pre-processing was performed by conditional quantile normalization and variance stabilization 
using cqn47 and DESeq248. Gao et al. PDX RNA-sequencing FPKM values were retrieved from Supplementary 
Table 1 in ref.29. GSE3514428, GSE6439216, GSE7484315 and E-MTAB-99114 PDX/organoid microarray gene 
expression datasets were downloaded from GEO49/ArrayExpress50 and CEL files were pre-processed using 
the justRMA function in the R package affy51, with brainarray Entrez v20 CDFs52. Preprocessed cell line 
and PDX Illumina BeadArray data were downloaded from GSE5985727 and GSE7640220, log2transformed 
and quantile normalized. TCGA level 3 RSEM gene-level RNA-sequencing data53 was downloaded from 
Broad GDAC Firehose [doi:10.7908/C11G0KM9]. For all datasets, non-CRC, neuro-endocrine cancers and 
same-patient duplicates were discarded prior to analysis. Gao et al. PDX drug response data is from ref.29 
Supplementary Table 1. Isella et al. PDX cetuximab response data is from GSE76402. Cell line MSI-status and 
5-FU response data were retrieved from Supplementary Tables 1,2 in ref.37 and cetuximab response groups 
from Fig. 2 in ref.35.

Gene expression analysis.  Single sample gene set enrichment analysis was performed with the R package 
GSVA54. Differential gene expression analysis was performed using limma55. For RNA-sequencing data, voom 
transformation with quantile normalization was performed prior to the limma modeling56. Principal component 
analysis was performed using the 1000 genes with the largest 10–90% inter-percentile range in expression values 
as input. RNA-sequencing data was first log2-transformed and batch adjusted according to sequencing platform 
(HiSeq/GAIIx) using the ComBat method implemented in the R package sva57.

Gene set tests.  For CMS marker genes down-regulated in the pCRC versus PDX comparison, statistical 
enrichment among 2038 unselected gene sets retrieved from reactome.org30 and MSigDB Hallmarks31,58 (v5.2) 
was assessed assuming a hypergeometric distribution using the phyper function in the R package stats26. Camera 
gene set analysis59 and visualization was performed using the R package limma with default parameters and 
implemented in the CMScaller function CMSgsa. For the latter analysis, gene sets were pre-selected to be likely 
CMS-informative based on Guinney et al. and are listed in Supplementary Table 310.

CMScaller template feature selection.  TCGA primary CRC (COADREAD) CMS labels were retrieved 
from Sage Bionetworks Synapse (syn4978511)10. TCGA pCRC RNA-sequencing samples53 were randomly 
assigned to a training (75%) and test set (25%) using the R function sample. Differential expression analysis in 
the TCGA test set was used to identify candidate markers with higher expression in each subtype compared to the 
remaining samples (LFC > 1, adjusted-p < 0.1). To generate the final template gene set, these candidates markers 
were enriched for cancer cell-intrinsic expression signals according to the following criteria. RNA-sequencing 
data for CRC cell lines32 was used to identify robust and intrinsic markers, genes among the top-25% with (i) 
highest expression in at least three samples and (ii) largest 10–90% inter-percentile range in expression values. 
limma differential expression analysis comparing pCRC with PDX models14 was used to further enrich for intrin-
sic markers defined as genes with LFC < 2. The intersection of candidate, robust and intrinsic markers were used 
as template features for nearest template prediction33, which is a correlation-based algorithm developed to pro-
vide robust class prediction for high-dimensional, noisy gene expression data, and which has been successfully 
adopted to various similar classification tasks (e.g. ref.27).

CMS classification.  CMS classifications were performed using either the original classifyCMS.RF func-
tion with default settings in the R package CMSclassfier,10 or the novel CMScaller. With CMScaller, predic-
tion confidence is estimated from gene resampling (n = 1000) and samples with false discovery rate adjusted 
p-value > 0.05 were “not assigned” (NA). To assess prediction variance, CMScaller was applied on 8 × 1000 
random TCGA train subsets (n = {10, 20, …, 80}). To determine whether subtyping is sample-type “cycle con-
sistent”, differential expression analysis of PDXs classified by CMScaller was used to develop new templates for 
nearest template prediction of the TCGA pCRC test set. Genes used for the PDX classification were not included 
in this new template.



www.nature.com/scientificreports/

7ScieNtific REPOrtS | 7: 16618  | DOI:10.1038/s41598-017-16747-x

Additional statistical analysis.  For differential gene expression analysis, hypergeometric gene set tests and 
nearest template predictions, Benjamini-Hochberg false discovery rate adjustment implemented in the R package 
stats in the function p.adjust was used to account for multiple-testing26,60. All reported accuracy values are overall 
accuracies (the number of classification agreements divided by the number of cases with those not assigned (NA) 
excluded).

Data availability.  All data analyzed during the current study were retrieved from public sources. In brief, 
GSE59857, GSE76402, GSE35144, GSE64392 and GSE74843 gene expression datasets were downloaded from 
Gene Expression Omnibus (GEO). TCGA pCRC gene expression data was downloaded from Broad GDAC 
Firehose accession doi:10.7908/C11G0KM9. Julien et al. PDX and pCRC gene expression dataset E-MTAB-991 
was downloaded from ArrayExpress. Additional data was retrieved as described in the relevant Methods sections.

Code availability.  The CMScaller (v0.99.1) R package is available in Supplementary Materials and will be 
submitted to Bioconductor61. Updates will be available on https://github.com/Lothelab/CMScaller. Instructions 
for installation and example code are given in Supplementary Tables and Figures.
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